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Abstract 

In the wood industry, surface inspection post-sanding is critical during the final 

production stages. This inspection relies on subjective assessments made by operators 

due to the challenges of adapting traditional measuring techniques to industrial 

environments. This study introduces an innovative artificial vision approach for the in-line 

inspection of surface roughness applied to wood and wood-based products in highly 

automated manufacturing systems. The procedure is based on extracting features from 

the grey-level co-occurrence matrix in images processed with edge-detection 

algorithms. Images are derived from photographs of sanded medium-density fibreboard, 

and models predicting surface roughness were formulated and compared with direct 

measurements using a stylus profilometer and a confocal microscope. Results showed 

that the most effective algorithm-feature combination was Roberts and Uniformity of 

Energy, with consistent performance for different roughness parameters. This approach 

can improve quality control and extend to a broader range of materials and applications. 

Keywords: wood-based products; finishing operations; artificial vision; stylus 

profilometry; confocal microscopy; roughness models. 
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1. Introduction 

In the wood products manufacturing industry, it is necessary to continuously improve the 

quality of products and components by optimising the operations involved in the 

manufacturing process. Finishing operations are of great relevance in the definition of 

final quality, a stage in which it is essential to conduct a detailed inspection to detect 

manufacturing errors according to the product's dimensional, geometric, and surface 

finish specifications. In addition, developing emerging manufacturing systems that aim to 

automate finishing operations using industrial robots [1] brings new challenges in 

designing quality inspection technologies to operate in highly automated environments. 

Inspecting the surface finish of a sanded wooden workpiece determines if the workpiece 

is accepted, rejected, or requires an additional operation. The surface finish will affect 

the adhesion force in applying coatings [2] and the user's perception of the product's 

final quality. Inspecting sanded workpieces is a critical task that is difficult to automate 

due to its multiparametric nature, which motivates, in the wood furniture industry, the 

inspection to be usually carried out through the subjective perception of the operator [3]. 

To quantitatively determine the quality of a surface, roughness measurement is used 

after an intermediate or final operation. However, using roughness measurement 

instruments in wood product manufacturing is infrequent due to the costs of purchasing 

measurement equipment, personnel training, measurement times, and the difficulties 

when measuring curved geometries if a contact stylus profilometer is used. 

Additionally, evaluating the surface roughness of wood products is a complex procedure, 

and there still needs to be an accepted methodology for performing roughness 

measurements on wood [4]. The results of the surface roughness measurement in 

processed wood vary depending on multiple factors, some associated with the type of 

wood, type of cut, structural characteristics, operating conditions, the measuring 

instrument used, and the processing of the wood profile, a representation of the 

measured surface texture to which different filters are applied before the roughness 

parameters are calculated. So many factors increase the difficulty in determining the 

influence of the process on the roughness of the piece. In the case of homogeneous 

materials such as medium-density fibreboard (MDF), since there is no fibre orientation 

[5], there are more appropriate conditions to determine the influence of the operation on 

the surface quality, decreasing the variability in the roughness present in the sanded 

workpiece. However, it is recognised that the roughness might change for varying depths 

in MDF due to changes in density as a result of the MDF manufacturing process [6]. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Gurau & Irle [4] reviewed methods to evaluate the wood surface roughness. Those 

approaches show that some researchers emphasise the elimination of cracks in the 

roughness profile, which are frequent in wood pieces, before calculating the amplitude 

parameters, thus improving the sensitivity of roughness to changes in operating 

conditions. This review also gathers different roughness measurement methods, from 

which it follows that conventional measuring instruments, commonly used in the 

laboratory, can be categorised as contact measuring equipment (i.e., stylus profilometer, 

atomic force microscope), and contactless measuring equipment (i.e., autofocus 

roughness meter, white light interferometer, confocal microscope). These instruments 

measure surface texture parameters associated with a profile or a surface according to 

ISO Geometrical Product Specifications (GPS) standards. 

There is currently no agreement about the preference for using contact or contactless 

methods to evaluate the surface finish of wood products. Magoss et al. [7] studied the 

use of confocal microscopy in the evaluation of the surface roughness of wood, obtaining 

that the mean of the parameters 𝑅𝑎, 𝑅𝑞, 𝑅𝑧, 𝑅𝑘 and 𝑅𝑣𝑘 were close to the parameters 

calculated from data measured with a stylus profilometer. In the case of the 𝑅𝑝𝑘 

parameter, the values measured with the confocal microscope turned out to be higher 

than when using the conventional stylus profilometer due to the higher resolution 

available in the microscope, which does not apply a mechanical filter as the stylus tip 

does (Figure 1), and when anomalous values are recorded by the sensor light saturation, 

reported by Caja García et al. [8]. However, Magoss et al. [7] concluded that the observed 

differences could be corrected by applying filters and eliminating artificial peaks, proving 

that confocal microscopy is an adaptable method for measuring the surface quality of 

wood pieces. 

 

Figure 1. Stylus profilometer and confocal microscope behaviour when measuring a 

surface. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Among the instruments mentioned above, only the stylus profilometer is feasible to use 

at an industrial level due to its costs and measurement times. However, its use is limited 

to flat surfaces. To develop automated inspection systems, it is necessary to test fast, 

non-conventional techniques for evaluating wood parts that can be applied in the 

industry. Liu et al. [9], who reviewed cutting tool failure diagnostic procedures by 

monitoring the surface texture of machined metal parts, pointed out the advantages of 

evaluating surface roughness through machine vision-based inspection systems, which 

take measurements faster and without scratching the surface. On the other hand, 

machine vision-based techniques proved to be more convenient and consistent than 

manual inspections in evaluating surface roughness. 

Techniques based on two-dimensional images allow fast and low-cost results, apply to 

surfaces that are difficult to measure using conventional instruments due to geometric or 

dimensional factors of the parts, and allow for an easy integration into automated 

systems, inspection stations, or intelligent systems [9]. In recent years, there has been a 

significant development in machine vision techniques to inspect the quality of parts [10]. 

Regarding surface roughness, tests have been carried out using algorithms that consider 

direct calculations on the pixels of a digital image, applying filters, statistical techniques, 

and machine learning algorithms through artificial intelligence algorithms [11].  

In the literature, there are examples of different techniques to assess the surface quality 

of parts from images, such as the extraction of roughness parameters from the grey-level 

histogram [12], the measurement of the intensity of light reflected by the surface in MDF 

boards [13] or the roughness estimation from analysis of light intensity differences in 

wood workpieces [14]. A method that showed a high correlation between the features 

extracted from the images and the standardised roughness evaluation parameters 

corresponds to the one proposed by Ghodrati et al. [15], who used image edge detection 

algorithms to estimate the roughness of plastic parts. Other examples of roughness 

estimation are those proposed by Lu et al. [16], who applied Laplacian-based edge 

enhancement on surfaces of casting components, Koblar & Filipič [17], presented the 

design of an online algorithm that applies an FFT filter and extracts features, which are 

used in a machine learning algorithm to predict roughness, and Kilinçarslan et al. [18] 

used an artificial neural network and random forest algorithm to predict roughness in 

heat-treated spruce wood surfaces. 

Another technique applied in studies that seek to determine roughness from images is 

obtaining features from the grey-level co-occurrence matrix (GLCM), which measures 
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the frequency of grey-level patterns between neighbouring pixels in an image. The first 

use based on the GLCM associated with the roughness evaluation was made by 

Gadelmawla [19]. Co-occurrence matrix-based techniques to measure roughness may 

vary depending on the specific material and the roughness range evaluated, which is 

why a previous calibration step is necessary [20]. Moreover, there are studies in the 

literature on using features extracted from the GLCM in the training of neural networks 

to estimate surface roughness, like the works done by Joshi & Patil [21] and Kumar et al. 

[22]. 

Some investigations have focused on developing deep learning models, such as using a 

convolutional network to evaluate roughness in machined parts processed by turning 

and milling [23] and in assessing roughness and defects [24]. Rifai et al. [25] estimated 

surface roughness and identified chatter vibration using vision-based deep learning. Lu 

et al. [26] developed a deep learning model combined with simulation data to recognise 

surface roughness in milling; Bhandari et al. [27] implemented a transformer-based deep 

learning architecture to classify surface roughness using sound and cutting force signals 

in end-milling; and He et al. [28] developed a theoretical and deep learning hybrid model 

to predict the surface roughness of diamond-turned polycrystalline materials. However, 

machine learning-based techniques, such as those mentioned above, require a large 

amount of data in the training stage and bring difficulties that need attention, such as 

model overfitting and out-of-range prediction problems. 

Based on the review outlined here, there is still no suitable method to evaluate the 

roughness of wood pieces using machine vision. To contribute to the advancement of 

the study of artificial vision techniques to inspect surfaces and, at the same time, compare 

different instruments for measuring roughness on sanded wood pieces, in this work, a 

novel method is developed to estimate the surface roughness of wood pieces based on 

combining GLCM and edge detection algorithms to obtain roughness parameters from 

photographic images. The proposed method is conceived to apply to in-line roughness 

inspection in highly automated sanding and polishing robotised stations. 

2. Methodology 

Automating sanding processes with industrial robots requires the development of fast 

and reliable inspection systems, which allow roughness to be measured with sufficient 

precision. The proposed method based on artificial vision requires previous calibration 

against known input values of roughness. In this study, the calibration is carried out with 

state-of-the-art instruments: contact measurement with a stylus profilometer and 
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contactless measurement with a confocal microscope. The calibration process begins 

with the photographic capture of the surface of the pieces. These images can be 

acquired from specimens taken from the product across its different sanding stages. The 

images are transformed to greyscale and then processed with five edge detection 

algorithms. Then, the GLCM is calculated for each image resulting from the above 

processing, including the original greyscale image, and five features are obtained from 

the matrix. With the roughness parameters and the features of the images, the best 

models are fit and selected, making it possible to estimate the roughness from new 

images. Next, the materials and methods considered in this study are described in detail. 

2.1 MDF sanded workpieces 

Sanded MDF workpieces, 180 x 110 x 15 mm3, were used. An aerosol polyurethane 

coating was applied to the lower surface of the specimens for correct attachment with 

the vacuum fixture. 

 

Figure 2. Robotic sanding station in which the MDF specimens were prepared. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Two experimental robotic sanding campaigns were carried out with the same operating 

conditions: one for obtaining estimation data (15 workpieces) and the other one for 

validation data (9 workpieces). The sanding process was carried out with a sander of in-

house design [1], driven by a servo motor mounted on the flange of a collaborative robot 

UR10e (Figure 2). A force of 20 N was applied to the specimen perpendicular to the feed 

direction, controlled by the collaborative robot; a rotating speed of 2000 min-1 in the 

servomotor; and a feed speed of 0.02 m/s, defined through a linear movement of the 

sanding pad, parallel to the surface of the specimen. The three types of circular 

sandpaper were 3M™ Cubitron™ II Hookit™ 127 mm diameter, with perforations for 

particle suction. 

In both experimental campaigns, the total number of specimens was subdivided into 

three groups: the first was processed with coarse P80 grit size (one pass), the second 

with P120 (one pass), and the third was sanded with two passes, one with P120 and the 

other, finer, with P240, considering the need to apply incremental sanding when using 

finer grits. In the sanding tests, the minimum number of passes was considered to avoid 

the variations in density present in MDF boards at different depths [29]. 

2.2 Roughness measurement 

To measure roughness, three measurement methods have been considered. One is a 

classic measurement by contact, a stylus profilometer, and two are optical, one based 

on a confocal microscope, which provides a high-precision digital definition of the surface 

geometry of the part, and another based on computer vision, where a general evaluation 

of the image is made. These methods exhibit advantages and limitations related to the 

nature of their measurement principles. Contact profilometer measurement is fast, 

reliable, robust, and can be applied to any part size. The confocal measurement is slow 

and limits the dimensions of the piece to be explored, but the high precision of the 

geometric model obtained provides excellent flexibility for the measurement and the 

definition of any normalised roughness parameter. It also performs a superficial scan 

instead of a linear scan. Vision-based measurement is fast and easy to incorporate into 

production lines, although it can have limited accuracy. The system proposed in this work 

is based on this type of measurement. 

In this study, the confocal evaluation of the roughness will be intercompared with the 

measurement by contact of the workpiece. At the same time, the normalised roughness 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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parameters obtained with these procedures will be intercompared with the parameters 

obtained by visual image processing. 

To obtain a comprehensive description of surface roughness, it is necessary to use more 

than one roughness parameter, even if the part surface is homogeneous [30]. For this 

reason, five parameters were selected based on the physical information provided by the 

sanding operation: the arithmetic mean height 𝑅𝑎, the maximum height 𝑅𝑧, the mean 

peak height 𝑅𝑝, the mean profile element spacing 𝑅𝑠𝑚, and the skewness 𝑅𝑠𝑘, according 

to ISO 21920-2. 

The measurements were made in the central area of the specimen in the feed direction 

of the rotating sanding pad (see Figure 2). 

2.3 Roughness parameters 

The surface roughness parameters are defined by the ISO 21920-2 [31] standard, 

published in December 2021, which replaces the ISO 4287, ISO 13565-2 and ISO 13565-

3 standards and implements some modifications in the stages of the profile processing 

and the way to calculate some roughness parameters. The new standard also increases 

the available parameters to describe surface roughness. 

For profile processing, the new standard considers the application of three filters in the 

order shown in Figure 3. Once the mechanical profile is obtained with the stylus tip, an 

S profile filter is applied to eliminate the small lateral scale components (short 

wavelength), with nesting index  𝑁𝑖𝑠, to obtain the primary surface profile. Then, operation 

F is applied to eliminate the profile form, using an association method and element (for 

example, a polynomial fit of order n by least squares), a filter L, which removes the large 

lateral scale components (long wavelength), with nesting index 𝑁𝑖𝑓, or a combination of 

stages. Once the form has been subtracted from the profile, the primary profile P is 

obtained, to which a filter L or a filter S with nesting index 𝑁𝑖𝑐 is applied to get the 

roughness profile R or the waviness profile W, respectively.  
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Figure 3. Profile processing scheme based on ISO 21920-2. 

In the new standard, the classification of roughness parameters changes. Previously, the 

amplitude parameters of mean values were an average of the calculation at each sample 

length (now section length); in the new standard, some of these parameters are 

calculated directly from the evaluation length. The parameters selected in this work are 

defined below, based on the ISO 21920-2 standard, and have been adapted for digital 

implementation. In addition, the changes observed in the new standard are mentioned. 

Arithmetic mean height (𝑅𝑎) 

The 𝑅𝑎 parameter is considered since it is a good representation of the distribution of 

profile deviations from the mean line, and its use is widespread in the industry. The height 

parameter 𝑅𝑎 does not experience changes in the renewal of the standard; it was 

previously calculated as the average of 𝑅𝑎 for each section; now, it is obtained directly 

from the evaluation length, which is mathematically equivalent in the case of this 

parameter. 

 𝑅a =
1

𝑛
∑|𝑧𝑖|,

𝑛

𝑖=1

 (1) 
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where n is the number of points of the roughness profile, and 𝑧𝑖 is the height of the i-th 

point of the profile. 

Skewness (𝑅𝑠𝑘) 

The skewness is a factor that could influence the uniformity of the coating, varnish or 

paint layers and could be indicative of the surface geometry of the sanding disc. It is also 

calculated directly from the evaluation length as it is a height parameter, so there are 

differences in the result compared to the previous standard, which applies it to each 

section length and then calculates the average. 

 𝑅sk =
1

𝑅q
3

1

𝑛
∑ 𝑧𝑖

3

𝑛

𝑖=1

, (2) 

where 𝑅𝑞, the root mean square height, is obtained according to Equation 3. 

 

𝑅q = √
1

𝑛
∑ 𝑧𝑖

2

𝑛

𝑖=1

 (3) 

Maximum height (𝑅𝑧) 

This parameter is related to the regularity of the sanding process, and it makes sense to 

associate it with an evaluation of 𝑅𝑎. According to ISO 21920-2, 𝑅𝑧 is a feature parameter 

defined as the mean of the distance between the maximum peak height (𝑧𝑝ℎ) and pit 

depth (𝑧𝑣𝑑) of each section. Previously, an independent 𝑅𝑧 was obtained for each section 

length (𝑙𝑠𝑐), corresponding to the profile evaluation length divided by the number of 

sections. 

 

𝑅z =
1

𝑛sc

∑ (max
𝑗∈𝑁p,𝑖

(𝑧ph,𝑗) + max
𝑗∈𝑁v,𝑖

(𝑧vd,𝑘))

𝑛sc

𝑖=1

, (4) 

where: 

     𝑛𝑠𝑐 is the number of profile sections. 

     𝑁𝑝,𝑖 = 𝑗 = 1,2, … , 𝑛𝑝|(𝑖 − 1)𝑙𝑠𝑐 ≤ 𝑥𝑗 < 𝑖 ∙ 𝑙𝑠𝑐;          

     𝑁𝑣,𝑖 = 𝑘 = 1,2, … , 𝑛𝑣|(𝑖 − 1)𝑙𝑠𝑐 ≤ 𝑥𝑘 < 𝑖 ∙ 𝑙𝑠𝑐; 

     𝑛𝑝 is the number of the profile peaks; 

     𝑛𝑣 is the number of the profile pits; 

     𝑥𝑗 is the position of the j-th peak on the X-axis; 

     𝑥𝑘 is the position of the k-th peak on the Y-axis. 
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Mean peak height (𝑅𝑝) 

This parameter complements the previous one and reveals the shape of the sandpaper 

grain and its distribution, as well as the number of passes made during sanding. It is a 

feature parameter indicating the average of the maximum height of each section. In this 

case, the modification is analogous to the parameter 𝑅𝑧. 

 

𝑅p =
1

𝑛sc

∑ max
𝑗∈𝑁𝑖

(𝑧𝑝ℎ,𝑗),

𝑛sc

𝑖=1

 (5) 

where 𝑁𝑖 = 𝑗 = 1,2, … , 𝑛𝑝|(𝑖 − 1)𝑙𝑠𝑐 ≤ 𝑥𝑗 < 𝑖 ∙ 𝑙𝑠𝑐 

Mean profile element spacing (𝑅𝑠𝑚) 

This parameter can indicate the distribution of the abrasive in the sandpaper and how 

the process has been carried out. It is a parameter based on the profile elements, 

indicating the average spacing between each element in the evaluation length. It is worth 

mentioning that for correct discrimination of the profile element in the digital 

implementation, it is recommended to use the code developed by Seewig et al. [32] 

 

𝑅sm =
1

𝑛pe

∑ 𝑋s,𝑖

𝑛pe

𝑖=1

, (6) 

where 𝑛𝑝𝑒 is the number of profile elements and 𝑋𝑠,𝑖 is the spacing of a profile element. 

 

2.4 Stylus profilometer 

A Mitutoyo SJ-310 stylus profilometer with a 5 µm stylus tip radius was used. Three 

measurements were made in the centre of each specimen in the direction of the feed 

rate, using a template to ensure measures in the same specimen area, as shown in Figure 

4. In every case, the evaluation length was 12.5 mm. 

For the processing of the profile, the following steps were considered: a Gaussian S filter 

was applied to the mechanical profile with 𝑁𝑖𝑠 = 0.008 𝑚𝑚; then, in operation F, a fit and 

subtraction of a polynomial of degree 6 was performed using least squares [33]; and 

finally a Gaussian L filter with 𝑁𝑖𝑐   =  2.5 𝑚𝑚 was applied to obtain the roughness profile. 

Due to the low presence of cracks in the MDF specimens, a robust Gaussian regression 

filter was not considered. Both the processing of the profile and the calculation of the 

parameters were carried out in MATLAB R2023a [34]. 
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The uncertainty in the roughness parameters was estimated by grouping the three 

measurements of each specimen, calculating the 95% confidence intervals in Student's 

t-distribution. The time required for measuring each workpiece is close to six minutes. 

 

Figure 4. The equipment used for roughness characterisation. 

 

2.5 Confocal microscope 

Measurements were made using a Zeiss LSM 700 confocal microscope, Axio Imager 2, 

with an Epiplan-Apochromat 10x/0.4 DIC M27 C objective, fluorescent contrast method 

with 405 nm wavelength laser light, at 4.0%, using a 0.29 AU pinhole. A unidirectional 

frame scan was performed with 968.15 ms, obtaining an image of 10240 x 512 px, 

equivalent to 12.80 mm x 640.17 µm, with a variable number of layers depending on the 

roughness of the MDF specimen, each layer separated at a height of 1.00 µm. 

The Zeiss Zen Black 2012 software was used for image acquisition, and the Confomap 

Mountains software [35] was used to visualise and obtain roughness parameters. As 

shown in the diagram of Figure 5, three lines were drawn along the surface to extract 

roughness profiles; later, the same configuration used with the profiles measured with 

the stylus profilometer was applied for profile filtering and parameter calculation. 

Uncertainty was estimated equivalent to using the contact method, with 95% confidence 

intervals in a Student's t-distribution. The time required for measuring each specimen 

depended on the number of layers, taking an approximate maximum of 45 minutes per 

workpiece. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 5. Scheme for obtaining profiles from the reconstructed image with the confocal 

microscope. 

 

2.6 Artificial vision 

Image acquisition was performed in a space with lighting controlled by a side LED 

(assembly of 8 LED strip with diffuser plate, 45 mm long,  luminous flux of 280 lm, 

temperature of colour of 3000 K, incidence angle of 70-80°), with a SONY STL-A58 

camera with DT 3.5-5.6/18-55 SAM II lens, 30 mm focal length, F14 aperture, exposure 

time 10 s, ISO 100, so that the image plane was parallel to that of the sanded surface, at 

a physical distance of 400 mm between the lens and the specimen, as shown in Figure 

4. 

After the capture, the images are cropped in the central area of the MDF sample with a 

size of 78 x 676 px, equivalent to approximately 4.5 x 39 mm2. Image processing consists 

of three stages. The first stage consists of the application of five edge detection 

algorithms to the greyscale image (Roberts, Sobel, Prewitt, Laplacian and Laplacian of 

Gaussian); in the second stage, the co-occurrence matrix is obtained for each one of the 

images; and in the third, five features are calculated from the matrix: Uniformity of Energy, 

Contrast, Homogeneity, Autocorrelation and Entropy. Image processing was 

implemented in Python 3.8 with the OpenCV library and GLCM feature extraction in 

MATLAB R2023a. 
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Stage 1. Edge detection algorithms 

Edge detection helps detect surface marks (roughness) where the light reflection will 

differ. In an image, an edge is defined as a significant local change in the light intensity 

of a point concerning its surroundings. This implies the accomplishment of two criteria: 

the shift in intensity must be relevant and, at the same time, be delimited [36]. However, 

in this study, edge detection algorithms are considered as a method to enhance the 

marks that determine the surface quality and reduce the influence of the change in 

ambient light. 

Edge detection algorithms usually consider three steps: 

● Filtering to eliminate noise that can affect the image. 

● Enhancement to facilitate edge detection based on intensity changes around a 

specific pixel. 

● Detection, in which a threshold criterion is used to discern between the points 

that are edges and those that are not. 

Since this work seeks to evaluate the roughness of a surface, it will only focus on the 

enhancement stage because applying a filter or a threshold could reduce the relevant 

information that describes the roughness. Five enhancement algorithms are analysed, of 

which three are based on the first derivative of the image intensity (Roberts, Sobel and 

Prewitt) and two on the second derivative (Laplacian and Laplacian of Gaussian). The 

first derivative shows the rate of change in intensity, while the second highlights the 

points where the rate of change varies, reducing the occurrence of highlighted edges. 

The derivatives are approximated through differences using convolution masks 

according to the equations presented in Appendix 1 [36]. 

Stage 2: GLCM 

The grey-level co-occurrence matrix, also known as GLCM, is a second-order statistical 

technique applied to digital images in greyscale that estimates the probability of a spatial 

relationship between two pixels, a reference pixel and another one displaced by 𝑑 =

(∆𝑥, ∆𝑦). From an image I, of 𝑛 ∙ 𝑚 px, a square matrix is obtained whose dimension varies 

according to the number of grey levels of the image, defined in Equation 7. 

 𝑴𝐜(𝑖, 𝑗) = ∑ ∑ {
1, if  𝐼(𝑥, 𝑦) = 𝑖  and  𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑗
0, otherwise 

𝑚

𝑦=1

𝑛

𝑥=1

 (7) 
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The co-occurrence matrix 𝑀𝑐  is added with its transpose, obtaining a symmetric matrix, 

which is then normalised, as shown in Equation 8. 

 𝑴𝐜𝐧 =
1

2 ∙ ∑ 𝑀c[𝑖, 𝑗]
(𝑴𝐜 + 𝑴𝐜

𝑇) (8) 

In this work, a normalised co-occurrence matrix is considered with a maximum of 8 levels 

and a displacement of 𝑑 = (1.0), perpendicular to the sanding marks that follow the 

direction of rotation of the sanding pad (Figure 2). 

Stage 3. Calculation of features 

In 1973, Haralick et al. [37] developed a set of 14 texture features intended to classify 

images based on the spatial distribution of grey levels. The features calculated from the 

GLCM are obtained in this work according to the definitions of Haralick and Shapiro [38], 

presented in Appendix 1. Algorithms were implemented to calculate the five most used 

features in the literature, consisting of Uniformity of Energy (U), Contrast (C), 

Homogeneity (H), Correlation—Autocorrelation in this paper—(A) and Shannon Entropy 

(S). 

 

2.7 Model estimation 

From the measurements performed on the set of 15 MDF specimens, using the stylus 

profilometer and the confocal microscope, Bayesian linear models [39] were created for 

each roughness parameter with the different combinations of GLCM features and the 

detection algorithm applied to cropped images (including the case of images without 

edge detection processing). Bayesian linear regression models are chosen because, 

unlike simple linear regression models, they make it possible to obtain prediction 

intervals that consider uncertainty as a probability distribution associated with estimating 

the model parameters. Subsequently, with the remaining 9 specimens, the models were 

validated. The estimated models are assessed using the root mean square error (RMSE) 

computed for estimation and validation data. Finally, the combination of algorithm and 

feature with the lowest RMSE was chosen for the roughness parameters. The estimation 

of the models was performed in MATLAB R2023a considering all estimation data points. 
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3. Results and discussion 

The dataset in this study, which includes roughness data measured with the confocal 

microscope and the stylus profilometer, and the corresponding photographic images of 

each sanding test, is available for the reader in [40]. 

 

3.1 Roughness evaluation 

For an adequate analysis of the results, it is necessary to check if the identification of the 

micro geometric profiles (mechanical and optical) is equivalent and provides similar 

information for calculating the normalised roughness parameters.  

Figure 6 shows the mechanical profile obtained with the roughness tester for specimens 

sanded with sandpaper of different grain sizes. As expected, smaller grain sizes give rise 

to profiles with smaller deviations from the zero line. It can also be observed that the 

profile distribution is highly symmetrical, which is attributable to the regular shape of the 

abrasive grain. In the collected profiles, no influence of the previous processes to which 

the piece has been subjected is observed. 

 

Figure 6. Roughness profiles obtained with the stylus profilometer and different grit 

sizes. 
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The confocal method identifies the micro-geometric surface according to the profiles 

obtained by the stylus profilometer (Figure 7). The distribution of the profile around the 

mean line is also very symmetrical and with a slightly more extended distribution, which 

confirms that the optical (confocal) method can obtain a profile with more resolution than 

a contact-based method (stylus). Similarly, smaller grain sizes result in narrower 

distributions of the profile deviation. 

The characterisation of the surface microgeometry by both methods is similar, with 

greater resolution of the confocal method in the case of sanded MDF pieces. 

 

Figure 7: Examples of images obtained with the confocal microscope on specimens 

sanded with different grit sizes. 

To analyse the associated dispersion when measuring with the stylus and the confocal 

microscope, the roughness measurements for each estimation specimen were plotted in 

Figure 8. While there is a natural tendency to reduce roughness using finer sandpaper, 

it is realised that a specific grit size does not necessarily imply a particular roughness 

level. When performing rough sanding with P80 sandpaper, there is a higher dispersion 

of roughness than in finer sanding. The roughness distribution in Figure 7 represents all 
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points of the multifocal reconstruction, which is more representative of the roughness 

behaviour than a specific line in the image. 

 

Figure 8: Confidence intervals (95%) of 𝑅𝑎 for each specimen of the estimation tests. 

Table 1 shows, for each grain size, the mean, median and standard deviation of 𝑅𝑎 for 

the different confidence intervals. It is observed that the confidence interval ranges are 

reduced as sanding with finer grits; the same happens with the standard deviation of 

those ranges. It also follows that the confidence intervals of the parameters measured 

with the confocal microscope are usually larger than those obtained with the stylus 

profilometer, although similar results are obtained with the finest grain P240. A reduced 

dispersion is a good indicator of the instrument’s performance. However, it must be 

considered that, due to the nature of the material, there is variability present on the 

surface. 

Table 1. Summary of the confidence interval (95%) ranges of 𝑅𝑎 for each grit size. 

Grit size Instrument Mean [µm] Median [µm] 
Standard 

Deviation [µm] 

P80 
Stylus 2.28 1.95 1.03 

Confocal 2.94 2.45 1.08 

P120 
Stylus 1.32 0.73 0.99 

Confocal 2.13 2.17 0.75 

P240 
Stylus 0.88 0.57 0.66 

Confocal 0.88 0.81 0.64 

 

In the graphs of Figure 9, a reduction in the magnitude of the roughness parameters can 

be seen as a finer grit is used (something similar occurs in the case of the confidence 
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intervals in the three height parameters: 𝑅𝑎, 𝑅𝑧, and 𝑅𝑝), which implies that the roughness 

parameters are not strictly independent in this particular operation. It can also be seen 

that with the confocal microscope, parameters of greater magnitude are usually obtained, 

especially in the case of the parameters 𝑅𝑧 and 𝑅𝑝. 

 

Figure 9. Roughness parameters measured with both instruments.  

The intercomparison of the normalised roughness parameters calculated from not 

exactly equal profiles endeavours to determine if there is a correlation between these 

parameters. 

To this end, a linear fit of the measurement data recorded by both techniques was carried 

out for each one of the roughness parameters obtained in the first 15 MDF workpieces, 

generating models defined by Equation 9, which were validated with the remaining nine 

workpieces (Figure 10). Table 2 shows the coefficients and some goodness of fit; note 

that RMSE is computed both with estimation and validation data. 

 𝑅𝑐𝑜𝑛𝑓𝑜𝑐𝑎𝑙 = 𝑤0 + 𝑤1 ∙ 𝑅𝑠𝑡𝑦𝑙𝑢𝑠 (9) 
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Table 2. Coefficients and goodness of fit of the models defined by Equation 9. 

 

The comparison shows that the confocal measurement has a higher resolution in the 

determination of 𝑅𝑧 and 𝑅𝑝, since the range of the stylus is smaller than the one provided 

by the confocal method for the same measurements. This range is appreciably greater 

and about double. This demonstrates that the optical measurement better determines 

the pits and peaks of the profile. On the other hand, it is confirmed that the parameters 

𝑅𝑧 and 𝑅𝑝 for a sanded MDF piece have a similar evolution, and therefore, they do not 

provide any additional information about each other as to the surface state of the 

workpiece. 

As occurs with other processes, the parameters 𝑅𝑎 and 𝑅𝑧 (𝑅𝑝) calculated by both 

methods are closely correlated, allowing an approximate conversion between them for 

the MDF sanding process. 

The measure of the profile skewness expressed according to 𝑅𝑠𝑘 and the spacing defined 

by 𝑅𝑠𝑚 are very similar for both methods, which shows that these open surface 

characteristics can be evaluated without distinction by any of the methods. 

Roughness 

parameter 

(Confocal) 

Interception 

𝑤0 

Coefficient 

𝑤1 

𝑅2  

estimation 

data 

RMSE 

estimation 

data 

RMSE 

validation 

data 

𝑅𝑎 [µm] -0.2857 1.2933 0.95 0.60 µm 0.93 µm 

𝑅𝑧 [µm] -6.8871 1.9463 0.95 4.31 µm 8.12 µm 

𝑅𝑝 [µm] 0.0458 2.5238 0.93 3.72 µm 5.41 µm 

𝑅𝑠𝑚 [mm] 0.0433 0.6730 0.83 0.01 mm 0.01 mm 

𝑅𝑠𝑘 [-] 0.7330 0.7349 0.47 0.40 0.17 
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Figure 10. Comparison of roughness parameters obtained from measurements with 

the confocal microscope and the stylus profilometer. 

 

3.2 Determination of surface finish through vision 

Figure 11 presents cutouts of greyscale images that show the surface finish after the 

sanding operation using different grit sizes. The result is delivered to the right of each 

image after applying the various edge detection algorithms considered in this study. 

These images were captured to extract the features and fit the models. For expository 

reasons, we increased the brightness and contrast of the images, and a gradient map 

was applied so that the reader could better visualise the surface marks after processing 

with different edge detection algorithms. Like the Laplacian algorithm, the Roberts 

algorithm tends to obscure the marks but does not remove them. On the other hand, 

Sobel, Prewitt, and the Laplacian of Gaussian enhance markings to a greater degree. 
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Figure 11. Images of MDF specimens sanded with different grit sizes and the result 

after applying the edge detection algorithms. 

As specified in the methodology, for calculating the GLCM, a vertical displacement 

coinciding with the sanding feed was used to consider thereby the same measurement 

direction made with the stylus profilometer and the traces extracted from the image 

obtained with the confocal microscope (Figure 5). 

Due to the difference observed between the contact and confocal measurement systems, 

models were made (Equation 10) comparing the features obtained when using vision 

algorithms with both measurement instruments separately. It is considered that, during 

the calibration stage, one of the two instruments will be selected, depending on 

availability, to perform calibration measurements on small-sized specimens made of the 

material to be processed. 

The vision algorithms analysed showed different performances when estimating 

roughness. Tables 3 and 4 show some results for selected combinations of algorithm and 

feature in the estimation of the parameter 𝑅𝑎. The RMSE values in Table 3 are calculated 

from the fitted model between the stylus measurements and the features extracted from 

the photographed images processed with edge detection algorithms. Table 4 presents 

the RMSE values of the fitted model between the confocal microscope and image 
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features. Henceforth, the Roberts algorithm for edge detection and the Uniformity of 

Energy (U) feature were selected, which yielded the best RMSE results compared to all 

the other combinations. In addition, the mean absolute percentage error (MAPE) was 

calculated to evaluate the models. MAPE values, presented in Appendix 2, are consistent 

with the RMSE results. 

Table 3. RMSE for stylus-based models (in µm). 

 
Uniformity of Energy 

(U) 

Entropy 

(S) 

Contrast 

(C) 

Homogeneity 

(H) 

Autocorrelation 

(A) 

Original 1.16 1.07 1.16 1.37 1.84 

Roberts 0.66 0.67 0.69 0.70 1.94 

Sobel 1.62 1.29 0.91 1.32 2.32 

Prewitt 1.43 1.18 0.86 1.22 2.14 

Laplaci

an 
0.91 0.92 0.89 0.94 1.49 

LoG 1.93 1.74 1.54 1.89 2.71 

 

Table 4. RMSE for confocal-based models (in µm). 

  
Uniformity of Energy 

(U) 

Entropy 

(S) 

Contrast 

(C) 

Homogeneity 

(H) 

Autocorrelation 

(A) 

Original 1.60 1.42 1.69 1.94 2.17 

Roberts 1.03 1.06 1.06 1.07 2.65 

Sobel 2.19 1.82 1.33 1.80 3.28 

Prewitt 1.96 1.70 1.28 1.69 3.05 

Laplaci

an 
1.41 1.44 1.37 1.41 2.26 

LoG 2.51 2.22 2.11 2.44 3.76 

 

A similar behaviour was observed with the parameters 𝑅𝑧 and 𝑅𝑝. In the case of the 𝑅𝑠𝑚 

parameter, the best result was Roberts with Entropy, although with a negligible difference 

from the result with Roberts and Uniformity of Energy. The parameter that performed 

worst was 𝑅𝑠𝑘. To facilitate the comparison between the estimated models for each 
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parameter, it was deemed necessary to plot them maintaining the Roberts combination 

with Uniformity of Energy. 

Figure 12 shows the models obtained by comparing the vision method with the stylus 

profilometer based on Equation 10. A Bayesian linear fit was used, and  ±2𝜎 prediction 

intervals were obtained. Table 5 shows the model coefficients, the precision 𝛽 =
1

𝜎2 and 

the coefficient of determination in the estimation 𝑅2, together with the RMSE evaluations 

in the estimation and validation. 

 𝑅 = 𝑤0 + 𝑤1 ∙ 𝑣𝑓𝑒𝑎𝑡𝑢𝑟𝑒 (10) 

 

Table 5. Coefficients and goodness of fit of the models defined by Equation 10, using 

the stylus profilometer. 

Parameter 

stylus 

Interceptio

n 𝑤0 

Coefficient 

𝑤1 

Precision 

𝛽 

𝑅2 

estimation 

RMSE 

estimation 

data 

RMSE 

validation 

data 

𝑅𝑎 [µm] 57.2507 -55.2224 2.67 0.90 0.61 µm 0.73 µm 

𝑅𝑧 [µm] 300.9354 -281.1843 0.06 0.85 4.05 µm 5.31 µm 

𝑅𝑝 [µm] 162.1268 -157.2091 0.34 0.91 1.71 µm 3.90 µm 

𝑅𝑠𝑚 [mm] 1.2324 -1.1371 4231 0.86 0.02 mm 0.02 mm 

𝑅𝑠𝑘 [-] 11.5163 -13.0721 11.61 0.69 0.29 0.57 

 

 

Figure 12. Bayesian linear models relating roughness and features obtained from the 

GLCM, based on the values of the stylus profilometer. 

Similarly to the previous models, Figure 13 shows the models obtained by comparing the 

vision method with the parameters measured with the confocal microscope. Table 6 

gathers the coefficients and evaluations of the proposed models. 
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Table 6. Coefficients and goodness of fit the models defined by Equation 10, using the 

confocal microscope. 

Roughnes

s 

Parameter 

confocal 

Interceptio

n 𝑤0 

Coefficient 
𝑤1 

Precision 

𝛽 

𝑅2 

estimation 

RMSE 

estimation 

data 

RMSE 

validation 

data 

𝑅𝑎 [µm] 77.6082 -75.3876 1.55 0.91 0.80 µm 1.43 µm 

𝑅𝑧 [µm] 592.2905 -560.8858 0.01 0.83 8.51 µm 12.16 µm 

𝑅𝑝 [µm] 404.1223 -390.9245 0.02 0.79 6.84 µm 8.89 µm 

𝑅𝑠𝑚 [mm] 0.8819 -0.7777 2657 0.65 0.02 mm 0.02 mm 

𝑅𝑠𝑘 [-] 10.8143 -11.3263 4.77 0.41 0.46 0.53 

 

Again, the Roberts and Uniformity of Energy combination delivered the best models. 

 

Figure 13. Bayesian linear models relating the roughness and features obtained from 

the GLCM, based on the values of the confocal microscope. 

3.3 Analysis of results 

For the developed models, the evaluation of error (RMSE) between each combination of 

algorithm-feature and surface roughness parameter, shows that the best performance 

was found in the combination of the Roberts algorithm and the Uniformity of Energy 

feature; thus, this selection was presented in the results.  

Based on the results, the repetition of the same algorithm-feature combinations may be 

due to the high correlation that the roughness parameters present with each other, as 

reported in previous investigations [41]. 
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Regarding the evaluation of the models (Equation 10), results showed that the best-

evaluated parameter is 𝑅𝑎, and the worst-evaluated is 𝑅𝑠𝑘. In general, the proposed 

method fits better with the measurements made with the stylus profilometer, possibly 

due to the resolution scales for which each instrument is intended. The confocal 

microscope is more susceptible to recording variations not recognised by the stylus or 

the digital image. 

To complement the results presented, Table 7 gathers the values of the Ra parameter 

for the validation workpieces measured using the stylus profilometer, the confocal 

microscope, and the computer vision system (stylus model). The differences observed 

at each validation point for the three methods are higher at greater roughness and 

decrease with lower roughness; this behaviour is expected due to the lack of uniformity 

in the coarse-grit sandpaper, which generates a higher dispersion of roughness in the 

surface. Beyond the observed difference, the roughness estimated by the proposed 

computer vision system is in good agreement with the roughness measured with the 

stylus profilometer, considered as the standard measuring method. Thus, taking into 

account that the field of application of this investigation is the manufacturing of wooden 

parts, we consider that the capacity of the computer vision system to estimate surface 

roughness is very high. 

Table 7. Comparison of Ra obtained with the studied methods. 

Validation 

Workpiece 

𝑅𝑎 [µm] 

Stylus (1) Confocal (1) Computer vision (2) 

1 4.95 ± 0.51 6.16 ± 0.48 4.02 ± 1.25 

2 5.70 ± 0.51 7.37 ± 0.28 6.72 ± 1.25 

3 4.27 ± 0.73 7.80 ± 1.18 4.62 ± 1.21 

4 4.38 ± 0.52 5.91 ± 0.42 2.97 ± 1.23 

5 3.31 ± 0.38 4.46 ± 0.79 2.69 ± 1.27 

6 3.57 ± 0.24 4.44 ± 0.60 3.19 ± 1.24 

7 2.30 ± 0.38 2.99 ± 0.17 2.14 ± 1.26 

8 2.44 ± 0.48 3.59 ± 0.20 2.19 ± 1.26 

9 1.97 ± 0.21 2.54 ± 0.39 2.08 ± 1.26 

(1) Mean value of three measuring points and its confidence interval. 

(2) Estimated value and its prediction interval.  

 

When observing the behaviour followed by the measurements used to validate the 

models, in most cases, the values obtained are within the prediction band, which implies 

reproducibility in the results. However, it is crucial to consider, as pointed out by Lu et al. 

[20], that the models based on GLCM features must be calibrated according to the 
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material and environmental light conditions, which opens the possibility of carrying out 

studies related to the optimisation of light conditions according to the material and the 

operation. Thus, calibration aspects added to the differences in the applied methodology 

could explain the differences with the results obtained by Ghodrati et al. [15], in which 

the Laplacian of Gaussian obtained the best results. 

The results revealed the enhanced performance of combining the Roberts algorithm and 

the Uniformity of Energy feature to estimate surface roughness. The Roberts algorithm 

filters the image using two 2x2 convolution masks, equivalent to the first derivative, 

generating an enhancement of the intensity changes in the image in two directions, which 

are then vectorially summed. Compared to the Sobel and Prewitt operators, Roberts is 

more sensitive to noise, an advantage for roughness estimation. On the other hand, the 

Laplacian and the Laplacian of Gaussian use a mask that represents the second 

derivative, generating an enhancement in the local maxima, which is helpful in detecting 

the edges of a part but not for roughness estimation. 

Moreover, the Uniformity of Energy, which corresponds to the sum of the squares of the 

co-occurrences, is high when there are several repeated pairs in the matrix and low when 

there are few repeated pairs. As the image was previously enhanced with the Roberts 

filter and reduced to 8 grey levels, the image of a rougher surface will present a higher 

variability between pixel pairs, generating a lower number of repeated pairs and, 

therefore, a low Uniformity of Energy value (a GLCM with low values). In contrast, in an 

image of a part with low roughness, pixel pairs will repeat more frequently. Due to the 

few changes of grey levels in the image, the GLCM values will be high in a few matrix 

elements, resulting in a high Uniformity of Energy. Finally, while Uniformity of Energy 

showed the best results, Entropy and Contrast operators also gave high goodness of fit 

(Tables 3 and 4). However, the Uniformity of Energy was chosen because, in addition to 

its high performance, it was the most straightforward computing characteristic. 

Medium-density fibreboards, despite being more homogeneous than other types of 

wood, exhibit density variations at different depths [6], [29], so it is necessary to study 

whether the proposed technique is still effective when sanding to greater depths. 

However, in finishing operations, such as sanding, the depths are less, so the effect of 

the change in density can be negligible. 

The model developed in this study covers sandpaper grit sizes commonly used in the 

wood products manufacturing industry, considering the goal of automating the inspection 
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of surface roughness. The roughness values after sanding MDF usually start from Ra = 2 

µm upwards. These values are within the typically expected roughness ranges for a wide 

variety of wood species, as previously reported by Zhong et al. [42]. 

Regarding the image capture settings, the experiments used a long exposure time, which 

in some particular cases might be too long to be implemented in real-time surface 

roughness inspection; however, this is not perceived as a difficulty because it is possible 

to reduce the exposure time by using better lighting or opening the aperture of the lens. 

In doing so, the researchers recommend keeping the ISO gain to a minimum so as not 

to introduce noise into the image, which can confuse the algorithm. 

Future work will be to evaluate the performance of the proposed methodology in other 

areas of the specimen, where sanding marks have different directions due to the nature 

of the rotary sanding operation; in these cases, it may be necessary to modify the 

hyperparameters of the co-occurrence matrix, such as the displacement vector and the 

number of levels to optimise the algorithm’s performance. There is an opportunity for 

future research to focus on optimising lighting conditions and image capture to adapt the 

algorithms to a specific industrial application that may demand higher shutter speed 

photographic captures. In addition, it should be tested whether the technique is effective 

on other wood materials that require sanding operations, such as plywood boards, widely 

used for furniture manufacturing. In this case, it might be necessary to complement the 

method for incorporating image processing steps to identify and manage the variations 

and attributes of natural wood, such as knots and cracks, not present in MDF. 

 

4. Conclusions  

This study introduces a novel method for automating the evaluation of surface roughness 

in wood-based sanded materials through image processing tailored for industrial 

applications. The investigators established the robustness of the method by applying it 

to estimate the surface roughness of sanded MDF specimens and calibrating it using 

Bayesian linear models with measurements from a stylus profilometer and a confocal 

microscope.  

This research validated the suitability of both instruments for characterising sanded MDF 

surfaces and presented a novel approach: combining an edge detection algorithm with 

GLCM-based feature extraction, resulting in superior correlations with surface roughness 

compared to the original image-extracted features. Among all possible algorithm-feature 
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combinations, the top-performing was Roberts for the edge detection algorithm and 

Uniformity of Energy for feature extraction, proving the feasibility of estimating sanded 

MDF roughness using computer vision.  

Implementing the method in a computer vision system is an innovative technique for 

surface roughness estimation in wood-based products, promising enhanced 

performance in quality control of finishing operations, with potential applications across 

diverse materials. While the method requires calibration for changing image resolution 

or lighting conditions, this can be achieved using roughness data from a profilometer or 

a confocal microscope, as demonstrated in this study. Future research endeavours will 

expand the scope of these findings to encompass various materials. 
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Appendix 1 

Table 8 presents the convolution masks of the enhancement algorithms and Table 9 the 

equations for obtaining the GLCM features. 

 

Table 8. Convolution masks used in this research. 

Edge detection 

algorithm 

Convolution masks 

Roberts 

 

𝐺𝑥 = 
1 0 

0 -1 

 

𝐺𝑦 = 
0 -1 

1  0 

 
 

Sobel 

 

𝐺𝑥 = 

-1 0 1 

-c 0 c 

-1 0 1 

 

𝐺𝑦 = 

1 c 1 

0 0 0 

-1 -c -1 

With c = 2. 

Prewitt Identical to Sobel, but with c = 1. 

Laplacian 

 

𝛻2
= 

0 1 0 

1 -4 1 

0 1 0 

    
 

Laplacian of 

Gaussian (LoG) 

 

𝐿𝑜𝐺 = 

0 0 -1 0 0 

0 -1 -2 -1 0 

-1 -2 16 -2 -1 

0 -1 -2 -1 0 

0 0 -1 0 0 
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Table 9. GLCM features. 

Feature Equation 

Uniformity of 

Energy 

𝑈 = ∑ 𝑀cn
2 [𝑖, 𝑗]

𝑖,𝑗

 

Contrast 𝐶 = ∑(𝑖 − 𝑗)2𝑀cn[𝑖, 𝑗]

𝑖,𝑗

 

Homogeneity 𝐻 = ∑
𝑀cn[𝑖, 𝑗]

1 + |𝑖 − 𝑗|
𝑖,𝑗

 

Autocorrelation 𝐴 = ∑
(𝑖 − 𝜇)(𝑗 − 𝜇)𝑀cn[𝑖, 𝑗]

𝜎2

𝑖,𝑗

 

Shannon Entropy 𝑆 = − ∑ 𝑀cn[𝑖, 𝑗] log(𝑀cn[𝑖, 𝑗])

𝑖,𝑗

 

 

Appendix 2 

Figure 14 shows the means of each feature algorithm combination for the three grit sizes, 

with 95% confidence intervals. 

 

Figure 14: Means of the features extracted from the GLCM for each edge detection 

algorithm and the original image. 
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Appendix 3 

Table 10 and Table 11 present the mean absolute percentage error (MAPE) for Ra in 

stylus and confocal models. 

Table 10. MAPE for stylus-based models. 

 
Uniformity of Energy 

(U) 

Entropy 

(S) 

Contrast 

(C) 

Homogeneity 

(H) 

Autocorrelation 

(A) 

Original 0.27 0.24 0.27 0.32 0.41 

Roberts 0.12 0.14 0.13 0.13 0.39 

Sobel 0.37 0.29 0.21 0.29 0.50 

Prewitt 0.32 0.28 0.20 0.28 0.46 

Laplaci

an 
0.20 0.21 0.19 0.20 0.32 

LoG 0.47 0.39 0.31 0.46 0.53 

 

Table 11. MAPE for confocal-based models. 

 
Uniformity of Energy 

(U) 

Entropy 

(S) 

Contrast 

(C) 

Homogeneity 

(H) 

Autocorrelation 

(A) 

Original 0.29 0.25 0.30 0.34 0.37 

Roberts 0.16 0.17 0.16 0.17 0.43 

Sobel 0.36 0.31 0.23 0.30 0.55 

Prewitt 0.33 0.30 0.23 0.29 0.51 

Laplaci

an 
0.23 0.25 0.23 0.23 0.35 

LoG 0.47 0.38 0.34 0.45 0.58 
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